
  

 

   

  

 

 

 

 

CHAPTER 11: 

LARGE 
LANGUAGE 

MODELS 
Daniel Loehr 

  



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 11: Large Language Models - 11-1 

  

 

CHAPTER 11:  

LARGE LANGUAGE MODELS 
Daniel Loehr 

 
 

A. Background ..................................................................................................................................... 11-2 

B. General Uses of LLMs .................................................................................................................... 11-6 

C. Using LLMs to Mitigate Climate Change ....................................................................................... 11-8 

D. Barriers ......................................................................................................................................... 11-11 

E. Risks .............................................................................................................................................. 11-12 

F. Recommendations ....................................................................................................................... 11-13 

G. References .................................................................................................................................... 11-14 

  



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 11: Large Language Models - 11-2 

  

 

In November 2022, the general public became aware of the power of artificial intelligence (AI) when 

OpenAI released a browser-based chat interface to its generative pre-trained transformer (GPT), a 

type of large language model (LLM). The generated text was so human-like the world experienced a 

“ChatGPT moment,” in which many felt that AI (represented by LLMs) had now reached human 

performance.  

LLMs have significant potential to help mitigate climate change. Already, LLMs are used in a variety 

of ways toward this goal. They help humans search and make sense of vast repositories of climate 

change information, from a variety of sources and in multiple languages. They identify sentiment and 

argument structure in human discussions of climate change. They find, classify and summarize 

climate change risks and impacts described within the growing breadth of climate literature.  

In the future, LLMs hold even greater potential. They can serve as tutors in climate education, depict 

personalized climate consequences, and suggest individualized climate actions. They can advance 

basic science in climate change mitigation, from materials science for developing better batteries or 

carbon capture materials to sophisticated power grid management for incorporating dynamic 

renewable energy sources. They could also serve as guides to shortcut the current maze of 

permitting requirements that are causing a backlog in bringing carbon-free energy to the grid. 

A. Background  

i. Evolution of Natural Language Processing (NLP) 

LLMs are an evolution of the 70-year-old field of natural language processing (NLP), in which 

computers process natural (human) languages. Table 11-1 shows common types of NLP. 

Table 11-1. Common types of natural language processing (NLP) 

NLP TYPE DESCRIPTION 

Machine Translation  Automatic language translation 

Named Entity Recognition Identifying entities in text, such as people, places and organizations 

Sentiment Analysis Identifying sentiment (opinion/viewpoint) in text 

Search Finding and retrieving user-relevant information in a specific set of text 
documents 

Question Answering Providing answers to specific questions, e.g. the answer “316 ppm” to 
the question “What was atmospheric CO2 concentration in January 
1960?” (vs. searching on e.g. “historic atmospheric CO2” and receiving 
relevant documents) 

Dialogue Management Chat 

Summarization Generating summaries of longer texts 

Topic Modeling Identifying topics in documents 

Argument Mining Extracting argument structure from text 
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NLP TYPE DESCRIPTION 

Optical Character Recognition Converting images of text into digital text 

Speech Recognition Converting speech into digital text 

Speech Synthesis Converting digital text into speech 

 

The general methodology of NLP can be divided into three historical paradigms.  

▪ The earliest was rule-based, coding explicit instructions in the form of rules. For example, a 

Spanish-English translation system would include a rule to convert “casa” to “house.” 

However, these rules are difficult to write explicitly and often fail to capture nuances or 

unusual cases.   

▪ The next paradigm, starting in the 1980s, was statistical, jettisoning explicit rules and taking 

advantage of the increasing amount of digital data. Here, the translation system would learn 

patterns from the available body of human-translated documents. For example, “house” is 

typically found in English translations of Spanish sentences containing “casa,” so the system 

learns to choose “house” as the translation.  

▪ The current paradigm, LLMs, started in the early 2010s and is also essentially statistical but 

takes advantage of much more powerful statistical models based on neural nets. As described 

below, LLMs handle the translation task by converting text in one language into a 

mathematical representation of the words (an “embedding”) that captures their core meaning. 

The LLM then converts that representation into text in another language. 

ii. Understanding Language Models (LMs) 

LLMs are more directly evolved from a statistical-paradigm model called a language model (LM). LMs 

originally developed in the 1980s to enable a variety of NLP tasks. They are probabilistic models of a 

natural language. That is, LMs capture the probabilities of the sequences of words (or sometimes 

sub-words or characters) in a language.  

LMs use sequences of words to derive embeddings, one of their core features. Embeddings are 

based on the idea that a word is defined “by the company it keeps.”1 For example, two common 

senses of the word “bank”—a financial 

bank and a river bank—will occur in 

different contexts of surrounding words 

(e.g., near words like “loan” or “water”). 

A word is thus embedded in its context, 

and by capturing the surrounding words 

of every word in a body of text, an LM 

stores each word’s embedding.  

Amazingly, embeddings allow the 

meaning of words to be treated like 
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mathematical equations. A well-known example is that when the mathematical value of the word 

“man” is subtracted from the value for “king,” and the value for “woman” is added, the resulting 

value is near the value for “queen.”2 Embeddings thus capture something essential about words, 

transferred out of the specific human language in which they occur. Specifically, embeddings are 

represented mathematically as vectors. The embedding vector for each word in a language is created 

by calculating which words it appears with most frequently. Further, a variety of downstream tasks 

use the de facto semantics that embeddings provide. For example, because words with similar 

embeddings are found in similar contexts, search algorithms can expand search terms with 

synonyms, by including words with vectors similar to those of the original search terms. 

iii. Growing from Language Models (LMs) to Large Language Models (LLMs) 

Large LMs (LLMs) are LMs of a much greater size than the original class of LMs. Though “large” is a 

relative term, it was first used in 2018 to describe a model called BERT (Bidirectional Encoder 

Representations from Transformers),3 which contained 340 million parameters. A parameter is 

roughly equivalent to a connection or node in a neural network. 

BERT made use of an effective new type of neural network, a transformer.4 The original transformer, 

developed in 2017 to translate from English into German, had two parts. An encoder converted 

English text into its embeddings (capturing the semantics of the source text). A decoder converted 

the embeddings into the German text.   

BERT used only the encoder part of transformers to generate high-quality embeddings. In contrast, 

LLMs, such as GPT, use only the decoder part of transformers to generate text from pretrained 

embeddings; hence the name generative pre-trained transformer (GPT). 

Since BERT, the largest LLMs have grown to over a trillion parameters (though others have been 

designed to reduce parameter size while maintaining similar performance). Modern LLMs also use 

faster parallel processing methods than earlier word-by-word sequential approaches. The immense 

scale and speed of LLMs has driven much higher performance on language-related tasks than 

previous types of models.  

There now exist dozens of LLMs, both proprietary and open source. Furthermore, though LLMs (as 

language models) started with text, embeddings need not be restricted to words. Pixels in images, 

audio clips, video frames, DNA sequences, computer code and many other types of data are best 

interpreted by models that are “aware” 

of the surrounding context. For this 

reason, LLMs can be multimodal, 

handling images, audio, video and other 

modalities, in addition to text.  

Because LLMs are typically used to 

generate text, images and other 

modalities, the technology is a type of 

Generative AI or GenAI. Another 

common term is foundation model  
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(FM), which refers to systems with a general functionality (a “foundation”) on which more specific 

applications can be built. For instance, ChatGPT is a specific chat system built on GPT, a general 

foundation. Though these three terms—LLM, GenAI and FM—describe slightly different types of 

systems, they overlap significantly and are often used interchangeably.  

Note that while LLMs are often the most effective tool for many NLP tasks, thanks to their 

foundational capabilities, this is not always the case. For example, traditional optical character 

recognition (OCR) tools currently outperform the OCR capabilities of image-enabled LLMs. 

iv. Improving and Evaluating Large Language Models (LLMs) 

An ecosystem of new technologies has arisen to improve the output of LLMs: 

▪ Prompt Engineering: LLMs generate output in response to prompts. Since the complexity of 

LLMs can yield greatly different responses to only slightly different prompts, a new discipline 

has emerged to create the most effective prompts for a given task. This can include providing 

the LLM with multiple examples (or “shots”) of the desired response type. 

▪ Retrieval-Augmented Generation (RAG): In RAG, the LLM searches a traditional database or 

trusted web source for information that it combines with its response. This can update the 

recency of information (incorporating information that has become available since the LLM 

was trained), allow companies to incorporate proprietary data, and reduce (but not eliminate) 

incorrect “hallucinations” to which LLMs are prone.  

▪ Agentic Workflows: LLMs can act as agents in a collection of multiple LLMs working with each 

other and with external tools, such as search engines, to achieve a goal. New programming 

languages have been created to develop these systems. 

▪ Fine Tuning: LLMs are typically trained as general-purpose models, which are then applied to a 

variety of specific domains. Yet they can also be fine-tuned by further training on domain-

specific data. ClimateBert5 and ClimateGPT6 are two examples in the climate domain. 

An important aspect of LLMs is evaluation of their performance, which not only records their 

astonishing progress but also drives their improvement by providing benchmarks to develop against. 

Dozens of evaluation frameworks have been created to test a variety of knowledge capabilities, such 

as question answering in a variety of subjects (e.g., logic, mathematics, commonsense reasoning and 

more). An example is Massive Multitask Language Understanding (MMLU), which contains 16,000 

multiple-choice questions from 57 academic topics.7 Figure 11-1 shows the performance of LLMs 

over four years on MMLU, revealing remarkable improvement, now reaching a human performance 

baseline of 90%. This also underscores how benchmarks are quickly being saturated and require 

replacement by more difficult ones. 
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Figure 11-1. Large language model (LLM) performance on Massive Multitask Language Understanding (MMLU) over 

time. From paperswithcode.com.8 

 

Templates called Winograd schemas are another evaluation framework used to evaluate LLMs. They 

are often used to test reasoning that is simple for humans but difficult for LLMs. In these templates, 

an answer depends on commonsense knowledge. For example, in the sentence “The trophy doesn't 

fit in the suitcase because it's too small,” does “it” refer to the trophy or the suitcase? Does the 

answer change if “small” is replaced by “large”?9 

LLMs have recently been evaluated specifically for their knowledge in the climate domain and have 

shown clear gaps in knowledge content and recency.10,11 Newer LLMs such as ClimateGPT,6 fine-

tuned on climate data, are an effort to fill these gaps. 

It is also necessary to evaluate more than knowledge capability. Equally important is assessing what 

is called alignment, meaning the extent to which LLMs are aligned with human values, such as 

helpfulness, harmlessness and honesty. This includes aspects such as ethics and morality, bias, 

toxicity, truthfulness and safety, including robustness against attacks. Benchmarks have been created 

to evaluate all these qualities.12 Assessing human-aligned values is difficult by its very nature, as 

human judgments, often the source of the content of these benchmarks, are subjective and variable. 

Thus, the ability to evaluate LLMs’ alignment with human values typically lags the ability to evaluate 

their knowledge capabilities. 

B. General Uses of LLMs 

Because of the hype surrounding LLMs, it can be difficult to determine exactly how they are currently 

being used. A 2024 Harvard Business Review13 article researched actual usage by individuals, via 

online forums, and came up with six overall themes. These are listed in the first part of the table 

below, along with example use cases for each. Following those are an additional set of attested uses 

by organizations. 
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 Table 11-2. Uses of LLMS 

INDIVIDUAL USE OF LLMS 

Technical Assistance & Troubleshooting 

• Debugging software code 

• Writing Excel formulas 

• Manipulating data 

Learning & Education 

• Generating a lesson plan 

• Giving simple explainers 

• Summarizing content 

Content Creation & Editing 

• Generating ideas 

• Drafting emails 

• Writing and editing cover letters 

Creativity & Recreation 

• Getting past writer’s block 

• Recommending movies, books, etc. 

• Writing poems 

Personal & Professional Support 

• Providing therapy/companionship 

• Providing business advice 

• Planning workouts 

Research Analysis & Decision-Making 

• Conducting specific searches 

• Performing fact-checking 

• Developing critiques & counterarguments 

ORGANIZATIONAL USE OF LLMS 

Software development assistance Creation of images and videos 

Business analytics Business analytics 

Personalized experiences 

• Marketing 

• Recommender systems 

Translation 

Search 

Data management 

Education 

• General training 

• Personalized tutoring 

Summarization  

• Search results 

• Product reviews 

• Documents 

• Meeting notes 

Generating documents 

• Business documents 

• Product descriptions 

User support (via chat, Q&A, or search) 

• Customer support 

• Helpdesk 

• Product information 

 

It is important to note that while LLMs are being used for these purposes and others, it is not yet 

clear how useful they are for these tasks. Nor is it clear whether LLMs are more useful than existing 

task-specific tools. For example, the search use case may be better served by traditional search 



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 11: Large Language Models - 11-8 

  

 

engines optimized for the task. 

Interestingly, only 11% of companies 

had adopted LLMs at scale as of May 

2024, according to McKinsey.14  

It is also worth noting that in most use 

cases above, the LLM assists humans in 

carrying out tasks, rather than replacing 

them. This may be the real value of 

LLMs, in which artificial intelligence 

augments human intelligence. For 

example, LLMs can generate software 

code for common short programming 

tasks or write job application cover letters, but it cannot be relied on to guarantee the correctness of 

those products. Because the presentation of LLM output can appear so human-like, humans often 

assume LLMs’ content is human-quality. Yet LLM content can be incorrect and even harmful, and 

human over-reliance on LLM output can be dangerous (see Section E). Nonetheless, humans can 

clearly benefit from LLM assistance with common tasks, in which humans provide a quality check 

before incorporating LLM output. 

C. Using LLMs to Mitigate Climate Change 

The use of natural language processing in studying climate change is not new. Traditional NLP has 

been used to help understand views expressed in online discussions and other texts concerning 

climate change for several decades.15,16 However the advent of LLMs six years ago greatly enhanced 

the ability of NLP to help mitigate climate change. In light of their remarkable effectiveness and rapid 

evolution, LLMs have the potential to play a helpful and important role in climate change mitigation. 

In fact, LLMs are already being applied to climate change in a number of ways. Examples are shown 

in Table 11-3, categorized by NLP type. 

 

Table 11-3. Existing applications of large language models (LLMs) to climate change, categorized by 

natural language processing (NLP) type 

NLP TYPE    APPLICATION OF LLM TO CLIMATE CHANGE 

Machine Translation  • Providing climate change information in Arabic17 

• Translating windmill operational codes to textual maintenance 
instructions18 

• Translating climate model components from Fortran to Python, to 
improve performance19 

Named Entity Recognition • Identifying specific geographic locations in climate literature and tracking 
regional impacts of climate change20 
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NLP TYPE    APPLICATION OF LLM TO CLIMATE CHANGE 

Sentiment Analysis • Determining stance on climate in news media21 

• Assessing human expert confidence in climate statements22 

• Estimating public opinion about global warming23 

Search • Improving search of climate laws and policies24 

• Mining the scientific literature for functional materials design25 

• Searching product descriptions against industry estimates of similar 
products’ embodied carbon footprints26 

Question Answering • Answering questions about climate information in corporate earnings 
calls27 

Dialogue Management • Providing climate information from corporate sustainability reports 
via chat28 

• Providing organizations’ and nations’ net-zero information via chat29 

Summarization • Providing summaries of climate information from authoritative UN 
documents30,31 or tailored to the user’s specific geography32 

Topic Modeling • Detecting climate change topics in public documents33 

• Identifying environmental, social and governance (ESG) topics in news 
media34 

• Identifying climate change topics in insurance, carbon disclosure35 and 
Nationally Determined Contribution documents36 

• Finding topics in the climate literature related to climate-induced 
infrastructure hazards37 

Argument Mining • Identifying narrative techniques in climate skeptic texts38,39 

• Using evidence-based reasoning for fact-checking of climate change 
claims40,41 

 

LLMs provide another capability: classification. Indeed, the largest category of work applying LLMs to 

climate change involves classification, as listed below. 

▪ Classifying evidence in building a dataset for verification of climate claims42 

▪ Classifying climate risks in corporate disclosure reports to track trends43 and analyze their 

impact on the credit default swap market44 

▪ Classifying Task Force on Climate-related Financial Disclosure (TCFD) categories in corporate 

disclosure documents45,46 

▪ Classifying presence/absence of net-zero claims47 and climate risk type in corporate earnings 

calls48 

▪ Classifying presence/absence of net-zero claims in laws and policies49 

▪ Classifying environmental, social and governance (ESG) categories in corporate documents47 
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▪ Classifying presence/absence of climate-related text50 or environmental claims51 in a variety of 

document types 

▪ Classifying climate change impacts found in the scientific literature52 

▪ Classifying financial activities to estimate emissions of investments53 

▪ Classifying climate change claims to benchmark a corporate greenwashing dataset54 

Finally, the productivity enhancements provided by LLMs can speed up routine tasks, freeing humans 

to focus on innovation (e.g., allowing a chemistry lab to more quickly predict molecular structures 

with better carbon absorption capability).55  

The ways in which LLMs are currently used to help mitigate climate change give good insight into the 

many ways they might be used for this purpose in the future. For example: 

▪ LLMs can be especially helpful in education about climate change. LLMs can help develop 

accessible materials on climate change and act as personalized “climate tutors” to bring 

individuals up to speed on various climate topics.  

▪ LLMs can also personalize the potential impacts of climate change. Non-LLM GenAI 

technologies can already create images of a user’s home or neighborhood under flood 

conditions to personalize climate change impacts.56 Generative AI using LLMs could enable 

depictions of climate impacts in myriad other ways.  

▪ In addition, LLMs can be monetized in business to develop personalized experiences in 

advertising and marketing. In this spirit, LLMs can be tuned so their responses include 

sustainability “nudges” (e.g., suggesting lower-carbon options when asked about recipes, 

investments, travel or other general topics).57 

Other potential use cases of LLMs include: 

▪ Summarizing policy documents 

▪ Monitoring the extent of natural disaster impacts via social media 

▪ Providing laypersons a natural language interface to specialized climate information tools and 

resources 

▪ Creating synthetic data to stand in for privacy-containing data, such as residential smart 

meters to further smart grid research 

▪ Identifying chemical names in scientific literature to assist in materials discovery 

▪ Shortening the grid interconnection queue with predictive planning to help operators manage 

increasingly renewable energy sources58  

More generally, the ability of LLMs to help with common tasks, such as data manipulation and 

software development, could augment AI practitioners’ technical efforts in the above use cases. 

Finally, an important contribution of LLMs could lie in accelerating permitting for renewable energy 

(RE) siting, construction, storage and transmission—an urgent need in the United States and other 
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geographies. In the United States, federally funded RE projects require an Environmental Impact 

Statement (EIS), and the average duration from initial notice to final decision is 4.5 years.59 In 

addition, there is an “interconnection queue” of RE power and storage plants seeking connection to 

the national grid. Currently in queue is an active capacity of nearly 2.6 TW (~1.6 TW power and ~1 

TW storage), twice the installed capacity of the entire US power plant fleet (~1.3 TW), and 95% of 

that queue is zero-carbon. However, the median duration from initial request to commercial 

operation is ~5 years.60  

Part of the permitting delay is the work proposers must undertake to navigate the dozens of 

potential required permits at the local, state, tribal, interstate and federal levels.61,62 LLMs are well 

suited for summarizing and extracting information from lengthy and complex documents, which 

could accelerate permitting. For example, LLMs could assist in processing voluminous public 

comments, automate application completeness checks, and extract and organize information from 

past permits, reviews and approvals to create a reference dataset useful for all stakeholders.63,64 

LLMs also estimate solar permitting risk for developers, based on zoning information.65,66 LLMs can 

also help draft lengthy permit applications (an EIS alone averages over 600 pages67), by generating 

application text. For instance, Microsoft is using LLMs to generate documents for nuclear power 

regulatory approval.68,69 

Such work would respond to federal permitting directives. For example, the 2022 White House 

Permitting Action Plan directs federal agencies to “identify, share, or develop … tools to assist project 

sponsors, permit applicants, affected communities, Tribal communities, and other stakeholders to 

navigate the environmental review and permitting process effectively.”70 In addition, the 2022 

Inflation Reduction Act includes DOE funding for “actions that may improve the chances of, and 

shorten the time required for, approval by the siting authority of the application relating to the siting 

or permitting of the covered transmission project,”71 and DOE is piloting the use of LLMs to 

streamline RE permitting.72 

D. Barriers  

Barriers to using LLMs to mitigate climate change include the following. 

▪ Limited Interpretability: LLMs, which can contain hundreds of billions of numbers as 

parameters, are to a large extent “black boxes.” It is difficult to understand how they arrive at 

their output, eroding trust in their answers related to climate change. Though work on AI 

interpretability is making LLMs somewhat more understandable, they are still largely opaque. 

▪ Incorrect Information: LLMs are well known for “hallucinating” or making up incorrect 

information, also eroding trust and willingness to apply them to climate change. This can be 

mitigated using some of the techniques described above (e.g., RAG). But the opacity of LLMs 

makes it difficult to guarantee that information they supply is correct. 

▪ Access Barriers: LLMs require huge capital investments for training and are thus currently 

concentrated within a few technology companies. This investment requirement can shut out 

the majority of potential climate mitigation practitioners, including smaller companies, the 
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global south and academia. Fortunately, a growing number of open-source and smaller-

footprint LLMs are showing good performance. 

▪ Intellectual Property Issues: Current litigation alleges copyright infringement of certain training 

data. Although many repositories of LLM training data in the climate domain actively 

encourage their dissemination, other climate information sources belong to organizations, 

such as the media, that protect their intellectual property. Thus, copyright issues could limit 

LLMs’ current and future use of climate-related data. 

E. Risks  

Risks of using LLMs to mitigate climate change include the following. 

▪ Bias: LLMs are trained on society’s data (e.g., the Internet) and reflect society’s biases. In the 

climate domain, much of the available training data are skewed toward the global north, which 

has a greater representation on the Internet. Recent work has tried to correct bias, but it is 

difficult and over-correction can yield factually incorrect output. 

▪ Security Threats: Like any software, LLMs can be exploited. They can be subject to “jailbreaks” 

and tricked into operating outside their prescribed instructions. They are also vulnerable to 

leaking personal or proprietary information, such as residential smart meter data, which could 

be used to maliciously target household residents. It is difficult to enforce LLM guardrails, 

given their complexity and opacity. 

▪ Greenhouse Gas (GHG) Emissions: LLMs are compute-intensive. The carbon footprint of AI in 

general is currently modest, but there is potential for growth. (See Chapter 15.) Mitigation 

gains achieved by LLMs in the fight against climate change could be partially undercut by their 

own GHG emissions. 

▪ Incorrect Use: Though LLMs have captured the public’s imagination and are thus turned 

toward a variety of uses, they are often not the right tool for the job. Consequences of 

incorrect use in the climate domain can range from simply being not as effective as other tools 

to disillusionment at not living up to hyped expectations to real-world damage if improperly 

used in critical applications, such as the power sector. 

▪ Harmful Use: For every beneficial purpose of LLMs, there can be an opposite harmful purpose 

they are turned toward. For instance, in the climate domain, LLMs can be positively directed 

toward mitigation via education, marketing, content creation or software development. Yet 

LLMs could also use these capabilities for climate change denial, misinformation, or 

encouragement and development of GHG-emitting activities. 

These issues are real obstacles to furthering application of LLMs in climate change mitigation, and 

work overcoming them requires as much focus as continued development of LLM capabilities. 
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F. Recommendations 

1. Private companies and academic researchers should continue to develop LLMs specifically trained 

on climate data and ensure they are openly available so the public can both improve them and 

benefit from them. 

2. National governments, private companies, academic researchers and standards development 

organizations should cooperate on developing further benchmarks for evaluating LLMs’ 

knowledge in the climate domain, thus extending the existing ecosystem for evaluating LLMs’ 

knowledge in general. 

3. Professional societies and academic experts should develop training programs on the proper use 

and limits of LLMs in mitigating climate change to help the public better understand the benefits 

and risks of using LLMs in the climate domain. 

4. National governments, private companies and academic researchers should cooperate on 

developing public challenge competitions on proposed climate mitigation use cases of LLMs to 

advance their development. 

5. National governments and private companies should expand current research and development 

(R&D) programs in addressing known issues with LLMs, so the public can place greater trust in 

LLMs, especially when applied to climate change. 

6. LLM developers and users should publish fine-grained measurements of LLMs’ carbon footprint by 

adopting tools to track and report the GHGs emitted by their compute time. 

7. National governments should fund R&D for public-facing prototypes to advance the use of LLMs 

for accelerating permitting of renewable energy. 
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